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ABSTRACT

We present limits to the amplitude of non-Gaussian primordial fluctuations in the WMAP
1-year cosmic microwave background sky maps. A non-linear coupling parameter, fNL, charac-
terizes the amplitude of a quadratic term in the primordial potential. We use two statistics: one
is a cubic statistic which measures phase correlations of temperature fluctuations after combin-
ing all configurations of the angular bispectrum. The other uses the Minkowski functionals to
measure the morphology of the sky maps. Both methods find the WMAP data consistent with
Gaussian primordial fluctuations and establish limits, −58 �

fNL
� 134, at 95% confidence.

There is no significant frequency or scale dependence of fNL. The WMAP limit is 30 times bet-
ter than COBE, and validates that the power spectrum can fully characterize statistical properties
of CMB anisotropy in the WMAP data to high degree of accuracy. Our results also validate the
use of a Gaussian theory for predicting the abundance of clusters in the local universe. We de-
tect a point-source contribution to the bispectrum at 41 GHz, bsrc = (9 � 5 � 4 � 4) � 10−5 � K3 sr2,
which gives a power spectrum from point sources of csrc = (15 � 6) � 10−3 � K2 sr in thermody-
namic temperature units. This value agrees well with independent estimates of source number
counts and the power spectrum at 41 GHz, indicating that bsrc directly measures residual source
contributions.
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1. INTRODUCTION

The Gaussianity of the primordial fluctuations is a key assumption of modern cosmology, motivated by
simple models of inflation. Statistical properties of the primordial fluctuations are closely related to those
of the cosmic microwave background (CMB) radiation anisotropy; thus, a measurement of non-Gaussianity
of the CMB is a direct test of the inflation paradigm. If CMB anisotropy is Gaussian, then the angular
power spectrum fully specifies the statistical properties. Recently, Acquaviva et al. (2002) and Maldacena
(2002) have calculated second-order perturbations during inflation to show that simple models based upon
a slowly-rolling scalar field cannot generate detectable non-Gaussianity. Their conclusions are consistent
with previous work (Salopek & Bond 1990, 1991; Falk et al. 1993; Gangui et al. 1994). Inflation models
that have significant non-Gaussianity may have some complexity such as non-Gaussian isocurvature fluctu-
ations (Linde & Mukhanov 1997; Peebles 1997; Bucher & Zhu 1997), a scalar-field potential with features
(Kofman et al. 1991; Wang & Kamionkowski 2000), or “curvatons” (Lyth & Wands 2002; Lyth et al. 2002).
Detection or nondetection of non-Gaussianity thus sheds light on physics of the early universe.

Many authors have tested Gaussianity of CMB anisotropy on large angular scales ( � 7
�
) (Kogut et al.

1996; Heavens 1998; Ferreira et al. 1998; Pando et al. 1998; Bromley & Tegmark 1999; Banday et al. 2000;
Contaldi et al. 2000; Mukherjee et al. 2000; Magueijo 2000; Novikov et al. 2000; Sandvik & Magueijo 2001;
Barreiro et al. 2000; Phillips & Kogut 2001; Komatsu et al. 2002b; Komatsu 2001; Kunz et al. 2001; Cayón
et al. 2002), on intermediate scales ( � 1

�
) (Park et al. 2001; Shandarin et al. 2002), and on small scales

( � 10
�
) (Wu et al. 2001; Santos et al. 2002; Polenta et al. 2002). So far there is no evidence for significant

cosmological non-Gaussianity.

Most of the previous work only tested the consistency between the CMB data and simulated Gaussian
realizations without having physically motivated non-Gaussian models. They did not, therefore, consider
quantitative constraints on the amplitude of possible non-Gaussian signals allowed by the data. On the other
hand, Komatsu et al. (2002b), Santos et al. (2002), and Cayón et al. (2002) derived constraints on a parameter
characterizing the amplitude of primordial non-Gaussianity inspired by inflation models. The former and
the latter approaches are conceptually different; the former does not address how Gaussian the CMB data
are or the physical implication of the results. In this paper, we adopt the latter approach, and constrain the
amplitude of primordial non-Gaussianity in the WMAP 1-year sky maps.

Some previous work all had roughly similar sensitivity to non-Gaussian CMB anisotropy at different
angular scales, because the number of independent pixels in the maps are similar, i.e., � 4000 − 6000 for
COBE (Bennett et al. 1996), QMASK (Xu et al. 2002), and MAXIMA (Hanany et al. 2000) sky maps.
Polenta et al. (2002) used about 4 � 104 pixels from the BOOMERanG map (de Bernardis et al. 2000), but
found no evidence for non-Gaussianity. The WMAP provides about 2 � 4 � 106 pixels (outside the Kp0 cut)
uncontaminated by the Galactic emission (Bennett et al. 2003c), achieving more than one order of magnitude
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improvement in sensitivity to non-Gaussian CMB anisotropy.

This paper is organized as follows. In § 2, we describe our methods for measuring the primordial non-
Gaussianity using the cubic (bispectrum) statistics and the Minkowski functionals, and present the results of
the measurements of the WMAP 1-year sky maps. Implications of the results for inflation models and the
high-redshift cluster abundance are then presented. In § 3, we apply the bispectrum to individual frequency
bands to estimate the point-source contribution to the angular power spectrum. The results from the WMAP
data are then presented, and also comparison among different methods. In § 4, we present summary of our
results. In Appendix A, we test our cubic statistics for the primordial non-Gaussianity using non-Gaussian
CMB sky maps directly simulated from primordial fluctuations. In Appendix B, we test our cubic statistic
for the point sources using simulated point-source maps. In Appendix C, we calculate the CMB angular
bispectrum generated from features in a scalar-field potential.

2. LIMITS ON PRIMORDIAL NON-GAUSSIANITY

2.1. The WMAP 1-year Sky Maps

We use a noise-weighted sum of the Q1, Q2, V1, V2, W1, W2, W3, and W4 maps. The maps are
created in the HEALPix format with nside = 512 (Górski et al. 1998), having the total number of pixels
of 12 � nside2 = 3 � 145 � 728. We do not smooth the maps to a common resolution before forming the co-
added sum. This preserves the independence of noise in neighboring pixels, at the cost of complicating
the effective window function for the sky signal. We assess the results by comparing the WMAP data
to Gaussian simulations processed in identical fashion. Each CMB realization draws a sample from the�

CDM cosmology with the power-law primordial power spectrum fit to the WMAP data (Hinshaw et al.
2003b; Spergel et al. 2003). The cosmological parameters are in Table 1 of Spergel et al. (2003) (we use
the best-fit “WMAP data only” parameters). We copy the CMB realization and smooth each copy with the
WMAP beam window functions of the Q1, Q2, V1, V2, W1, W2, W3, and W4 (Page et al. 2003a). We
then add independent noise realizations to each simulated map, and co-add weighted by Nobs

��� 2
0 , where the

effective number of observations Nobs varies across the sky. The values of the noise variance per Nobs,
� 2

0 ,
are tabulated in Table 1 of (Bennett et al. 2003b).

We use the conservative K p0 mask to cut the Galactic plane and known point sources, as described in
Bennett et al. (2003c), retaining 76.8% of the sky (2,414,705 pixels) for the subsequent analysis. In total 700
sources are masked on the 85% of the sky outside the Galactic plane in all bands; thus, the number density
of masked sources is 65.5 sr−1. The Galactic emission outside the mask has visible effects on the angular
power spectrum (Hinshaw et al. 2003b). Since the Galactic emission is highly non-Gaussian, we need to
reduce its contribution to our estimators of primordial non-Gaussianity. Without foreground correction, both
the bispectrum and the Minkowski functionals find strong non-Gaussian signals. We thus use the forground
template correction given in Table 3 of Bennett et al. (2003a) to reduce foreground emission to negligible
levels in Q, V, and W bands.
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2.2. Methodology

2.2.1. Model for Primordial Non-Gaussianity

We measure the amplitude of non-Gaussianity in primordial fluctuations parametrized by a non-linear
coupling parameter, fNL (Komatsu & Spergel 2001). This parameter determines the amplitude of a quadratic
term added to the Bardeen curvature perturbations � ( � H in Bardeen (1980)), as

� (x) = � L(x) + fNL
� � 2

L(x) − ��� 2
L(x) ��� � (1)

where � L are Gaussian linear perturbations with zero mean. Although the form in equation (1) is inspired
by simple inflation models, the exact predictions from those inflation models are irrelevant to our analysis
here because the predicted amplitude of fNL is much smaller than our sensitivity; however, this parameteri-
zation is useful to find quantitative constraints on the amount of non-Gaussianity allowed by the CMB data.
Equation (1) is general in that fNL parameterizes the leading-order non-linear corrections to � . We discuss
the possible scale-dependence in Appendix C.

Angular bispectrum analyses found � fNL � � 1500 (68%) from the COBE DMR 53+90 GHz coadded
map (Komatsu et al. 2002b) and � fNL � � 950 (68%) from the MAXIMA sky map (Santos et al. 2002). The
skewness measured from the DMR map smoothed with filters, called the Spherical Mexican Hat wavelets,
found � fNL � � 1100 (68%) (Cayón et al. 2002), although they neglected the integrated Sachs–Wolfe effect
in the analysis, and therefore underestimated the cosmic variance of fNL. BOOMERanG did not measure
fNL in their analysis of non-Gaussianity (Polenta et al. 2002). The r.m.s. amplitude of � is given by� � 2 � 1 � 2

� � � 2
L � 1 � 2 �

1 + f 2
NL � � 2

L ��	 . Since � � 2 � 1 � 2
measured on the COBE scales through the Sachs–Wolfe

effect is �
� 2 � 1 � 2
= 3 ��� T 2 � 1 � 2 �

T � 3 � 3 � 10−5 (Bennett et al. 1996), one obtains f 2
NL �
� 2

L � � 2 � 5 � 10−3

from the COBE 68% constraints; thus, we already know that the contribution from the non-linear term to the
r.m.s. amplitude is smaller than 0.25%, and that to the power spectrum is smaller than 0.5%. This amplitude
is comparable to limits on systematic errors of the WMAP power spectrum (Hinshaw et al. 2003a), and
needs to be constrained better in order to verify the analysis of the power spectrum.

2.2.2. Method 1: The Angular Bispectrum

Our first method for measuring fNL is a “cubic statistic” which combines nearly optimally all configu-
rations of the angular bispectrum of the primordial non-Gaussianity (Komatsu et al. 2002a). The bispectrum
measures phase correlations of field fluctuations. We compute the spherical harmonic coefficients a lm of
temperature fluctuations from

alm = � d2 nM( n)
� T ( n)

T0
Y �lm( n) � (2)

where M( n) is a pixel-weighting function. Here, M( n) is the K p0 sky cut where M( n) takes 0 in the cut
region and 1 otherwise. We filter the measured alm in l-space and transform it back to compute two new
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maps, A(r� n) and B(r� n), given by

A(r� n) � lmax�
l=2

l�
m=−l

�
l(r)bl�
Cl

almYlm( n) � (3)

B(r� n) � lmax�
l=2

l�
m=−l

�
l (r)bl�
Cl

almYlm( n) � (4)

Here
�

Cl � Clb2
l + N, where Cl is the CMB anisotropy, N the noise bias, and bl the beam window function

describing the combined smoothing effects of the beam (Page et al. 2003a) and the finite pixel size. The
functions �

l(r) and
�

l(r) are defined by

�
l(r) � 2� � k2dkgTl(k) jl(kr) � (5)

�
l (r) � 2� � k2dkP(k)gTl(k) jl(kr) � (6)

where r is the comoving distance. These two functions constitute the primordial angular bispectrum and
correspond to �

l(r) = f −1
NLbNL

l (r) and
�

l (r) = bL
l (r) in the notation of Komatsu & Spergel (2001). We compute

the radiation transfer function gTl(k) with a code based upon CMBFAST (Seljak & Zaldarriaga 1996) for
the best-fit cosmological model of the WMAP 1-year data (Spergel et al. 2003). We also use the best-
fit primordial power spectrum of � , P(k). We then compute the cubic statistic for the primordial non-
Gaussianity, Sprim, by integrating the two filtered maps over r as (Komatsu et al. 2002a)

�
prim = m−1

3 � 4 � r2dr � d2 n
4 � A(r� n)B2(r� n) � (7)

where the angular average is done on the full sky regardless of sky cut, and m3 = (4 � )−1 � d2 nM3( n) is the
third-order moment of the pixel-weighting function. When the weight is only from a sky cut, as is the case
here, we have m3 = fsky, i.e., m3 is the fraction of the sky covered by observations (Komatsu et al. 2002b).
Komatsu et al. (2002a) show that B is a Wiener-filtered map of the underlying primordial fluctuations, � .
The other map A combines the bispectrum configurations that are sensitive to non-linearity of the form in
equation (1). Thus,

�
prim is optimized for measuring the skewness of � and picking out the quadratic term

in equation (1).

Finally, the non-linear coupling parameter fNL is given by

fNL �

�	
lmax�

l1 
 l2 
 l3

( � prim
l1l2l3

)2�
l1

�
l2

�
l3

� −1 �
prim � (8)

where � prim
l1l2l3

is the primordial bispectrum (Komatsu & Spergel 2001) multiplied by bl1 bl2 bl3 and computed
for fNL = 1 and the best-fit cosmological model. This equation is used to measure fNL as a function of the
maximum multipole lmax. The statistic

�
prim takes only N3 � 2 operations to compute without loss of sensitiv-

ity whereas the full bispectrum analysis takes N5 � 2 operations. It takes about 4 minutes on 16 processors of
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an SGI Origin 300 to compute fNL from a sky map at the highest resolution level, nside = 512. We measure
fNL as a function of lmax. Since there is little CMB signal compared with instrumental noise at l � 512, we
shall use lmax = 512 at most; thus, nside = 256 is sufficient, speeding up evaluations of fNL by a factor of 8 as
the computational time scales as (nside)3 . The computation takes only 30 seconds at nside = 256. Note that
since we are eventually fitting for two parameters, fNL and bsrc (see sec. 3), we include covariance between
these two parameters in the analysis. The covariance is, however, small (see Figure 8 in Appendix A).

While we use uniform weighting for M( n), we could instead weight by the inverse noise variance per
pixel, M( n) = N−1( n); however, this weighting scheme is sub-optimal at low l where the CMB anisotropy
dominates over noise so that the uniform weighing is more appropriate. For measuring bsrc, on the other
hand, we shall use a slightly modified version of the N −1 weighting, as bsrc comes mainly from small angular
scales where instrumental noise dominates.

2.2.3. Method 2: The Minkowski Functionals

Topology offers another test for non-Gaussian features in the maps, measuring morphological struc-
tures of fluctuation fields. The Minkowski functionals (Minkowski 1903; Gott et al. 1990) describe the
properties of regions spatially bounded by a set of contours. The contours may be specified in terms of
fixed temperature thresholds, � = � T

���
, where

�
is the standard deviation of the map, or in terms of the

area. Parameterization of contours by threshold is computationally simpler, while parameterization by area
reduces correlations between the Minkowski functionals (Shandarin et al. 2002). We use a joint analysis of
the three Minkowski functionals (area A( � ), contour length C( � ), and genus G( � )) explicitly including their
covariance; consequently, we work in the simpler threshold parameterization.

The Minkowski functionals are additive for disjoint regions on the sky and are invariant under coordi-
nate transformation and rotation. We approximate each Minkowski functional using the set of equal-area
pixels hotter or colder than a set of fixed temperature thresholds. The fractional area

A( � ) =
1
A

�
i

ai =
N �
Ncut

(9)

is thus the number of enclosed pixels, N � , divided by the total number of pixels on the cut sky, Ncut. Here ai

is the area of an individual spot, and A is the total area of the pixels outside the cut. The contour length

C( � ) =
1

4A

�
i

Pi (10)

is the total perimeter length of the enclosed regions Pi, while the genus

G( � ) =
1

2 � A
(Nhot − Ncold) (11)

is the number of hot spots, Nhot, minus the number of cold spots, Ncold. We calibrate finite pixelization
effects by comparing the Minkowski functionals for the WMAP data to Monte Carlo simulations.
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The WMAP data are a superposition of sky signal and instrument noise, each with a different morphol-
ogy. The Minkowski functionals transform monotonically (although not linearly) between the limiting cases
of a sky signal with no noise and a noise map with no sky signal. Unlike spatial analyses such as Fourier de-
composition, different regions of the sky cannot be weighted by the signal-to-noise ratio, nor does the noise
“average down” over many pixels. The choice of map pixelization becomes a tradeoff between resolution
(favoring smaller pixels) versus signal-to-noise ratio (favoring larger pixels). We compute the Minkowski
functionals at nside = 16 through 256 (3072 to 786,432 pixels on the full sky). We use the WMAP Kp0 sky
cut to reject pixels near the Galactic plane or contaminated by known sources. The cut sky has 1433 pixels
at resolution nside = 16 and 666,261 pixels at nside = 256.

We compute the Minkowski functionals at 15 thresholds from −3 � 5
�

to +3 � 5
�

, and compare each
functional to the simulations using a goodness-of-fit statistic,

� 2 =
�
� 1 � 2

[F i
WMAP − � F i

sim � ] � 1 � −1� 1 � 2
[F i

WMAP − � F i
sim � ] � 2 � (12)

where F i
WMAP is a Minkowski functional from the WMAP data (the index i denotes a kind of functional),

� F i
sim � is the mean from the Monte Carlo simulations, and � � 1 � 2 is the bin-to-bin covariance matrix from the

simulations.

2.3. Monte Carlo Simulations

Monte Carlo simulations are used to estimate the statistical significance of the non-Gaussian signals.
One kind of simulation generates Gaussian random realizations of CMB sky maps for the angular power
spectrum, window functions, and noise properties of the WMAP 1-year data. This simulation quantifies
the uncertainty arising from Gaussian fields, or the uncertainty in the absence of non-Gaussian fluctuations.
The other kind generates non-Gaussian CMB sky maps from primordial fluctuations of the form of equa-
tion (1) (see Appendix A for our method for simulating non-Gaussian maps). This simulation quantifies the
uncertainty more accurately and consistently in the presence of non-Gaussian fluctuations.

In principle, one should always use the non-Gaussian simulations to characterize the uncertainty in
fNL; however, the uncertainty estimated from the Gaussian realizations is good approximation to that from
the non-Gaussian ones as long as � fNL � � 500. Our non-Gaussian simulations verify that the distribution
of fNL and bsrc around the mean is the same for Gaussian and non-Gaussian realizations (see Figure 8 in
Appendix A for an example of fNL = 100). The Gaussian simulations have the advantage of being much
faster than the non-Gaussian ones. The former takes only a few seconds to simulate one map whereas the
latter takes 3 hours on a single processor of an SGI Origin 300. Also, simulating non-Gaussian maps at
nside = 512 requires 17 GB of physical memory. We therefore use Gaussian simulations to estimate the
uncertainty in measured fNL and bsrc.



– 8 –

2.4. Limits to Primordial Non-Gaussianity

Figure 1 shows fNL measured from the Q+V+W coadded map using the cubic statistic [Eq (8)], as a
function of the maximum multipole lmax. We find the best estimate of fNL = 38 � 48 (68%) for lmax = 265.
The distribution of fNL is close to a Gaussian, as suggested by Monte Carlo simulations (see Figure 8 in
Appendix A). The 95% confidence interval is −58 � fNL

� 134. There is no significant detection of fNL at
any angular scale. The r.m.s. error, estimated from 500 Gaussian simulations, initially decreases as � l −1

max,
although fNL for lmax = 265 has a smaller error than that for lmax = 512 because the latter is dominated by the
instrumental noise. Since all the pixels outside the cut region are uniformly weighted, the inhomogeneous
noise in the map (pixels on the ecliptic equator are noisier than those on the north and south poles) is not
accounted for. This leads to a noisier estimator than a minimum variance estimator. The constraint on f NL for
lmax = 512 will improve with more appropriate pixel-weighting schemes (Heavens 1998; Santos et al. 2002).
The simple inverse noise (N−1) weighting makes the constraints much worse than the uniform weighting,
as it increases errors on large angular scales where the CMB signal dominates over the instrumental noise.
The uniform weighting is thus closer to optimal. Note that for the power spectrum, one can simply use the
uniform weighting to measure Cl at small l and the N−1 weighting at large l. For the bispectrum, however,
this decomposition is not simple, as the bispectrum � l1l2l3 measures the mode coupling from l1 to l2 and
l3 and vice versa. This property makes it difficult to use different weighting schemes on different angular
scales. The first column of Table 1 shows fNL measured in Q, V, and W bands separately. There is no a
significant band-to-band variation, or a significant detection in any band.

Figure 2 shows the Minkowski functionals at nside = 128 (147,594 high-latitude pixels, each 28
�

in
diameter). The gray band shows the 68% confidence region derived from 1000 Gaussian simulations. Table
2 shows the � 2 values [Eq.(12)]. The data are in excellent agreement with the Gaussian simulations at all
resolutions. The individual Minkowski functionals are highly correlated with each other (e.g., Shandarin
et al. (2002)). We account for this using a simultaneous analysis of all three Minkowski functionals, re-
placing the 15-element vectors F i

WMAP � � and � F i
sim � � � in equation (12) (the index i denotes each Minkowski

functional) with 45-element vectors F� = [F1 � F2 � F3] � = [Area, Contour, Genus] � and using the covariance

Table 1: The non-linear coupling parameter, the reduced point-source angular bispectrum, and the point-
source angular power spectrum (positive definite) by frequency band. The errorbars are 68%. The tabulated
values are for the Kp0 mask, while the Kp2 mask gives similar results.

fNL bsrc csrc

[10−5 � K3 sr2] [10−3 � K2 sr]

Q 51 � 61 9 � 5 � 4 � 4 15 � 6
V 42 � 63 1 � 1 � 1 � 6 4 � 5 � 4
W 37 � 75 0 � 28 � 1 � 3 —

Q+V+W 38 � 48 0 � 94 � 0 � 86 —
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Fig. 1.— The non-linear coupling parameter fNL as a function of the maximum multipole lmax, measured
from the Q+V+W coadded map using the cubic (bispectrum) estimator [Eq. (8)]. The best constraint is ob-
tained from lmax = 265. The distribution is cumulative, so that the error bars at each lmax are not independent.
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of this larger vector as derived from the simulations. We compute � 2 for values fNL = 0 to 1000, comparing
the results from WMAP to similar � 2 values computed from non-Gaussian realizations. Figure 3 shows
the result. We find a best-fit value fNL = 22 � 81 (68%), with 95% confidence upper limit fNL

� 139, in
agreement with the cubic statistic.

2.5. Implications of the WMAP Limits on fNL

2.5.1. Inflation

The limits on fNL are consistent with simple inflation models: models based on a slowly rolling scalar
field typically give � fNL � � 10−2 − 10−1 (Salopek & Bond 1990, 1991; Falk et al. 1993; Gangui et al. 1994;
Acquaviva et al. 2002; Maldacena 2002), three to four orders of magnitude below our limits. Measuring
fNL at this level is difficult because of the cosmic variance. There are alternative models which allow larger
amplitudes of non-Gaussiantiy in the primordial fluctuations, which we explore below.

A large fNL may be produced when the following condition is met. Suppose that � is given by � = � x
where � is a transfer function that converts x to � and x = x(1) + x(2) +

�
(x(3)) denotes a fluctuating field

expanded into a series of x(i) = fix(i−1)x(1) with f1 = 1. Then, fNL = � −1 f2. Inflation predicts the amplitude
of x(i) and the form of fi which eventually depends upon the scalar field potential; thus, x(i) would be of
order (H

�
mplanck)i (H is the Hubble parameter during inflation) for H � mplanck, and the leading order term

is � H �
mplanck � 10−5 � . In this way � “suppresses” the amplitude of fluctuations, allowing a larger amplitude

for H
�
mplanck � 10−5 � −1. What does this mean? If H � 10−2mplanck, then � � 10−3 and fNL � 103 f2. The

amplitude of fNL is thus large enough to detect for f2 � 0 � 1. This suppression factor, � , seems necessary
for one to obtain a large fNL in the context of the slow-roll inflation. The suppression also helps us to avoid
a “fine-tuning problem” of inflation models, as it allows H

�
mplanck to be of order slightly less than unity

(which one might think natural) rather than forcing it to be of order 10−5.

Curvatons proposed by Lyth & Wands (2002) provide an example of a supression mechanism. A
curvaton is a scalar field,

�
, having mass, m � , that develops fluctuations, � � , during inflation with its energy

density, ��� � V (
�

), tiny compared to that of the inflaton field that drives inflation. After inflation ends,
radiation is produced as the inflaton decays, generating entropy perturbations between

�
and radiation,

S ��� = �	� � � � � − 3
4 �	� �

� � � . When H decreases to become comparable to m � , oscillations of
�

at the bottom
of V (

�
) give ��� � m2� � 2. In the limit of “cold inflation” for which �	�
� � ��� is nearly zero, one finds S ��� �

�	��� � ��� � 2 � � ��� + ( � � ��� )2 . As long as
�

survives after the production of S ��� , the curvature perturbation �
is generated as � = 1

2 � S �� ��� [x(1) + 1
2 (x(1))2] where x(1) = � � ��� (i.e., f2 = 1

2 ). The generation of � continues
until

�
decays, and � is essentially determined by a ratio of ��� to the total energy density, ��� , at the time

of the decay. Lyth et al. (2002) numerically evolved perturbations to find � � 2
5 ��� at the time of the decay.

The smaller the curvaton energy density is, the less efficient the S �� to � conversion becomes (or the more
efficient the supression becomes). The small ��� thus leads to the large fNL, as fNL = � −1 f2 � 5

4 � −1� (i.e., fNL

is always positive in this model). Assuming the curvaton exists and is entirely responsible for the observed
CMB anisotropy, our limits on fNL imply ��� � 9 � 10−3 at the time of the curvaton decay. (However, the



– 11 –

Fig. 2.— The left panels show the Minkowski functionals for WMAP data (filled circles) at nside = 128 (28
�

pixels). The gray band shows the 68% confidence interval for the Gaussian Monte Carlo simulations. The
right panels show the residuals between the mean of the Gaussian simulations and the WMAP data. The
WMAP data are in excellent agreement with the Gaussian simulations.
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Table 2: � 2 for Minkowski Functionalsa

nside Pixel Diam Minkowski WMAP f ( � WMAP)b

(deg) Functional � 2

256 0.2 Genus 15.9 0.57
128 0.5 Genus 10.7 0.79
64 0.9 Genus 15.7 0.44
32 1.8 Genus 18.7 0.26
16 3.7 Genus 16.8 0.22

256 0.2 Contour 9.9 0.93
128 0.5 Contour 9.9 0.83
64 0.9 Contour 14.6 0.54
32 1.8 Contour 12.8 0.58
16 3.7 Contour 11.9 0.67

256 0.2 Area 17.4 0.50
128 0.5 Area 10.9 0.74
64 0.9 Area 11.9 0.66
32 1.8 Area 21.9 0.12
16 3.7 Area 15.7 0.33

a � 2 computed using Gaussian simulations. There are 15 degrees of freedom.
bFraction of simulations with � 2 greater than the value from the WMAP data.
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lower limit to ��� does not mean that we need the curvatons. This constraint makes sense only when the
curvaton exists and is entierly producing the observed fluctuations.)

Features in an inflaton potential can generate significant non-Gaussian fluctuations (Kofman et al. 1991;
Wang & Kamionkowski 2000), and it is expected that measurements of non-Gaussianity can place constrains
on a class of the feature models. In Appendix C, we calculate the angular bispectrum from a sudden step in
a potential of the form in equation (C2). This step is motivated by a class of supergravity models yielding
the steps as a consequence of successive spontaneous symmetry-breaking phase transitions of many fields
coupled to the inflaton (Adams et al. 1997, 2001). One step generates two distinct regions in l space where� fNL � is very large: a positive fNL is predicted at l

�
lf, while a negative fNL at l � lf, where lf is the projected

location of the step. Our calculations suggest that the two regions are separated in l by less than a factor of
2, and one cannot resolve them without knowing lf. The average of many l modes further smeares out the
signals. The averaged fNL thus nearly cancels out to give only small signals, being hidden in our constraints
in Figure 1. Peiris et al. (2003) argue that some sharp features in the WMAP angular power spectrum
producing large � 2 values may arise from features in the inflaton potential. If this is true, then one may be
able to see non-Gaussian signals associated with the features by measuring the bispectrum at the scales of
the sharp features of the power spectrum.

2.5.2. Massive cluster abundance at high redshift

Massive halos, like clusters of galaxies at high redshift, are such rare objects in the universe that their
abundance is sensitive to the presence of non-Gaussianity in the distribution function of primordial den-
sity fluctuations. Several authors have pointed out the power of the halo abundance as a tool for finding
primordial non-Gaussianity (Lucchin & Matarrese 1988; Robinson & Baker 2000; Matarrese et al. 2000;
Benson et al. 2002); however, the power of this method is extremely sensitive to the accuracy of the mass
determinations of halos. It is necessary to go to redshifts of z � 1 to obtain tight constraints on primordial
non-Gaussianity, as constraints from low and intermediate redshifts appear to be weak (Koyama et al. 1999;
Robinson et al. 2000) (see also Figure 4 and 5). Due to the difficulty of measuring the mass of a high-
redshift cluster the current constraints are not yet conclusive (Willick 2000). The limited number of clusters
observed at high redshift also limits the current sensitivity. In this section, we translate our constraints on
fNL from the WMAP 1-year CMB data into the effects on the massive halos in the high-redshift universe,
showing the extent to which future cluster surveys would see signatures of non-Gaussian fluctuations.

We adopt the method of Matarrese et al. (2000) to calculate the dark-matter halo mass function dn
�
dM

for a given fNL, using the
�

CDM with the running spectral index model best-fit to the WMAP data and the
large-scale structure data. This set of parameters is best suited for the calculations of the cluster abundance.
The parameters are in the rightmost column of Table 8 of Spergel et al. (2003). We calculate

dn
dM

= 2
� m0

M

�
�
�
�
dP
dM

�
�
�
� � (13)

where � m0 = 2 � 775 � 1011( � mh2) M � Mpc−3 = 3 � 7 � 1010 M � Mpc−3 is the present-day mean mass density
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of the universe, P(M � z) is the probability for halos of mass M to collapse at redshift z, and dP
�
dM is given

by
dP
dM

� � �
0

�
d
�

2 � �
d
� 2

dM
sin ��� −

�
3

d �
3

dM
cos ����� e− � 2 � 2 � 2 � (14)

where the angle ��� is given by ��� � � � c +
� 3 �

3
�
6, and � c(z) is the threshold overdensity of spherical collapse

(Lacey & Cole 1993; Nakamura & Suto 1997). The variance of the mass fluctuations as a function of z is
given by

� 2(M � z) = D2(z)
� 2(M � 0), where D(z) is the growth factor of linear density fluctuations,

� 2(M � 0) =� �
0 dkk−1F2

M(k) � 2(k), � 2(k) � (2 � 2)−1k3P(k) is the dimensionless power spectrum of the Bardeen curvature
perturbations, FM(k) � g(k)T (k)W (kRM) a filter function, g(k) � 2

3 (k
�
H0)2 � −1

m0 a conversion factor from � to
density fluctuations, T (k) the transfer function of linear density perturbations, W (x) � 3 j1(x)

�
x the spherical

top-hat window smoothing density fields, and RM � [3M
�
(4 � � m0)]1 � 3 the spherical top-hat radius enclosing

a mass M. The skewness �
3(M � z) = D3(z) �

3(M � 0), where

�
3(M � 0) = 6 fNL � �

0

dk1

k1
FM(k1) � 2(k1) � �

0

dk2

k2
FM(k2) � 2(k2) � 1

0
d � FM( 	 k2

1 + k2
2 + 2k1k2

� ) � (15)

arises from the primordial non-Gaussianity. We use a Monte Carlo integration routine called vegas (Press
et al. 1992) to evaluate the triple integral in equation (15). It follows from equation (15) that a positive
fNL gives a positive �

3, positively skewed density fluctuations. Also this dn
�
dM reduces to the Press–

Schechter form (Press & Schechter 1974) in the limit of fNL 
 0. Although the Press–Schechter form
predicts significantly fewer massive halos than N-body simulations (Jenkins et al. 2001), we assume that
a predicted ratio of the non-Gaussian dn

�
dM to the Gaussian dn

�
dM is still reasonably accurate, as the

primordial non-Gaussianity does not affect the dynamics of halo formations which causes the difference
between the Press–Schechter form of dn

�
dM and the N-body simulations.

Figure 4 shows the WMAP constraints on the ratio of non-Gaussian dn
�
dM to the Gaussian one, as a

function of M and z. We find that the WMAP constraint on fNL strongly limits the amplitude of changes in
dn

�
dM due to the non-Gaussianity. At z = 0, dn

�
dM is changed by no more than 20% even for 4 � 1015 M �

clusters. The number of clusters that would be newly found at z = 1 for M
� 1015 M � should be within +40

−10%
of the value predicted from the Gaussian theory. At z = 3, however, much larger effects are still allowed:
dn

�
dM can be increased by up to a factor of 2.5 for 2 � 1014 M � .

Predictions for actual cluster surveys are made clearer by computing the source number counts as a
function of z,

dN
dz

� dV
dz

� �
Mlim

dM
dn
dM

� (16)

where V (z) is the comoving volume per steradian, and Mlim is the limiting mass that a survey can reach.
In practice Mlim would depend on z due to, for example, the redshift dimming of X-ray surface brightness;
however, a constant Mlim turns out to be a good approximation for surveys of the Sunyaev–Zel’dovich (SZ)
effect (Carlstrom et al. 2002). Figure 5 shows the ratio for dN

�
dz as a function of z and M lim. A source-

detection sensitivity of Slim = 0 � 5 Jy roughly corresponds to Mlim = 1 � 4 � 1014 M � (Carlstrom et al. 2002),
for which dN

�
dz should follow the prediction of the Gaussian theory out to z � 1 to within 10%, but dN

�
dz

at z = 3 can be increased by up to a factor of 2. As Mlim increases, the impact on dN
�
dz rapidly increases.
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The SZ angular power spectrum CSZ
l is so sensitive to

�
8 that we can use CSZ

l to measure
�

8 (Komatsu &
Kitayama 1999). The sensitivity arises largely from massive (M � 1014 M � ) clusters at z � 1. From this fact
one might argue that CSZ

l is also sensitive to the primordial non-Gaussianity. We use a method of Komatsu &
Seljak (2002) with dn

�
dM replaced by equation (13) to compute CSZ

l for the WMAP limits on fNL. We find
that CSZ

l should follow the prediction from the Gaussian theory to within 10% for 100 �
l

� 10000. This is
consistent with CSZ

l being primarily sensitive to halos at z � 1, where the effect on dN
�
dz is not too strong

(see Figure 5). Since CSZ
l �

� 7
8( � bh)2 (Komatsu & Seljak 2002),

�
8 can be determined from CSZ

l to within
2% accuracy at a fixed � bh using the Gaussian theory. The current theoretical uncertainty in the predictions
of CSZ

l is a factor of 2 in CSZ
l (10% in

�
8), still much larger than the effect of the non-Gaussianity.

3. LIMITS TO RESIDUAL POINT SOURCES

3.1. Point-source Angular Power Spectrum and Bispectrum

Radio point sources distributed across the sky generate non-Gaussian signals, giving a positive bispec-
trum, bsrc (Komatsu & Spergel 2001). In addition, the point sources contribute significantly to the angular
spectrum on small angular scales (Tegmark & Efstathiou 1996), contaminating the cosmological angular
power spectrum. It is thus important to understand how much of the measured angular power spectrum
is due to sources. We constrain the source contribution to the angular power spectrum, csrc, by measuring
bsrc. Komatsu & Spergel (2001) have shown that WMAP can detect bsrc even after subtracting all (bright)
sources detected in the sky maps. Fortunately, there is no degeneracy between fNL and bsrc, as shown later
in Appendix A.

In this section we measure the amplitude of non-Gaussianity from “residual” point sources which are
fainter than a certain flux threshold, Sc, and left unmasked in the sky maps. The bispectrum bsrc is related to
the number of sources brighter than Sc per solid angle N( � Sc):

bsrc(Sc) = � Sc

0
dS

dN
dS

[g( � )S]3 = −N( � Sc)[g( � )Sc]3 + 3 � Sc

0

dS
S

N( � S)[g( � )S]3 � (17)

where g( � ) is a conversion factor from Jy sr−1 to � K which depends on observing frequency � as g( � ) =
(24 � 76 Jy � K−1 sr−1)−1[(sinh x

�
2)
�
x2]2, x � h �

�
kBT0 � �

�
(56 � 78 GHz) for T0 = 2 � 725 K (Mather et al. 1999),

and dN
�
dS is the differential source count per solid angle. The residual point sources also contribute to the

point-source power spectrum csrc as

csrc(Sc) = � Sc

0
dS

dN
dS

[g( � )S]2 = −N( � Sc)[g( � )Sc]2 + 2 � Sc

0

dS
S

N( � S)[g( � )S]2 � (18)

By combining equation (17) and (18) we find a relation between bsrc and csrc,

csrc(Sc) = bsrc(Sc)[g( � )Sc]−1 + � Sc

0

dS
S

bsrc(S)[g( � )S]−1 � (19)

We can use this equation combined with the measured bsrc as a function of Sc to directly determine csrc

as a function of Sc, without relying on any extrapolations. When the source counts obey a power-law like
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dN
�
dS � S � , one finds bsrc(S) � S4+ � ; thus, brighter sources contribute more to the integral in equation (19)

than fainter ones as long as
�

� −3, which is the case for fluxes of interest. Bennett et al. (2003c) have
found

�
= −2 � 6 � 0 � 2 for S = 2 − 10 Jy in Q band. Below 1 Jy,

�
becomes even flatter (Toffolatti et al.

1998), implying that one does not have to go down to the very faint end to obtain reasonable estimates of
the integral. In practice, we use equation (17) with N( � S) of the Toffolatti et al. (1998) model (hereafter
T98) at 44 GHz to compute bsrc(S � 0 � 5 Jy), inserting it into the integral to avoid missing faint sources and
underestimating the integral.

3.2. Measurement of the Point-source Angular Bispectrum

The reduced point-source angular bispectrum, bsrc, is measured by a cubic statistic for point sources
(Komatsu et al. 2002a), �

ps = m−1
3 � d2 n

4 � D3( n) � (20)

where the filtered map D( n) is given by

D( n) � lmax�
l=2

l�
m=−l

bl�
Cl

almYlm( n) � (21)

This statistic is even quicker ( � 100 times) to compute than Sprim (eq.[7]), as it involves only one integral
over n and only one filtered map. This statistic also retains the same sensitivity to the point-source non-
Gaussianity as the full bispectrum analysis. The cubic statistic Sps gives bsrc as

bsrc �

�	
3

2 � lmax�
l1 
 l2 
 l3

( � ps
l1l2l3

)2�
l1

�
l2

�
l3

� −1 �
ps � (22)

where � ps
l1l2l3

is the point-source bispectrum for bsrc = 1 (Komatsu & Spergel 2001) multiplied by bl1 bl2 bl3 .

While the uniform pixel-weighting outside the Galactic cut was used for fNL, we use here M( n) =
� � 2

CMB + N( n) � −1

where
� 2

CMB = (4 � )−1 �
l(2l +1)Clb2

l is the variance of CMB anisotropy and N( n) is the variance of noise per
pixel which varies across the sky. This weighting scheme is nearly optimal for measuring bsrc as the signal
comes from smaller angular scales where noise dominates. The factor of

� 2
CMB approximately takes into

account the non-zero contribution to the variance from CMB anisotropy. This weight reduces uncertainties
of bsrc by 17%, 23%, and 31% in Q, V, and W bands, respectively, compared to the uniform weighting. We
use the highest resolution level, nside = 512, and integrate equation (22) up to lmax = 1024. In Appendix B, it
is shown that this estimator is optimal and unbiased as long as very bright sources, which have contributions
to

�
Cl too large to ignore, are masked. We cannot include csrc in the filter, as it is what we are trying to

measure using bsrc.

The filled circles in the left panels of Figure 6 represent bsrc measured in Q (top panel) and V (bottom
panel) band. We have used source masks for various flux cuts, Sc, defined at 4.85 GHz to make these
measurements. (The masks are made from the GB6+PMN 5 GHz source catalogue.) We find that bsrc



– 17 –

increases as Sc: the brighter sources unmasked, the more non-Gaussianity is detected. On the other hand one
can make predictions for bsrc using equation (17) for a given N( � S). Comparing the measured values of bsrc

with the predicted values from N( � S) of T98 (dashed lines) at 44 GHz, one finds that the measured values
are smaller than the predicted values by a factor of 0.65. The solid lines show the predictions multiplied by
0.65. Both errors in the T98 predictions and a non-flat energy spectrum of sources easily cause this factor.
(If sources have a non-flat spectrum like S � ��� where ���= 0, then Sc at Q or V band is different from that at
4.85 GHz.) Bennett et al. (2003c) find that the majority of the radio sources detected in Q band have a flat
spectrum, � = 0 � 0 � 0 � 2. Our value for the correction factor matches well the one obtained from the WMAP
source counts for 2 − 10 Jy in Q band (Bennett et al. 2003c).

Equation (18) combined with the measured bsrc is used to estimate the point-source angular power
spectrum csrc. The right panels of Figure 6 show the estimated csrc as filled circles. These estimates agree
well with predictions from equation (18) with N( � S) of T98 multiplied by a factor of 0.65 (solid lines). For
Sc = 1 Jy at Q band, csrc = (19 � 5) � 10−3 � K2 sr, and matches well the value estimated from the WMAP
source counts at the same flux threshold (Bennett et al. 2003c), which corresponds to the solid lines in the
figure. At V band, csrc = (5 � 4) � 10−3 � K2 sr. Here, the hat denotes that these values do not represent csrc

for the standard source mask used by Hinshaw et al. (2003b) for estimating the cosmological angular power
spectrum. Since the standard source mask is made of several source catalogues with different selection
thresholds, it is difficult to clearly identify a mask flux cut. We give the standard mask an “effective” flux
cut threshold at 4.85 GHz by comparing bsrc measured from the standard source mask (shaded areas in
Figure 6; see the second column of Table 1 for actual values) with those from the GB6+PMN masks defined
at 4.85 GHz. The measurements agree when Sc � 0 � 75 Jy in Q band. Using this effective threshold, one
expects csrc for the standard source mask as csrc = (15 � 6) � 10−3 � K2 sr in Q band. This value agrees with
the excess power seen on small angular scales, (15 � 5 � 1 � 7) � 10−3 � K2 sr (Hinshaw et al. 2003b), as well as
the value extrapolated from the WMAP source counts in Q band, (15 � 0 � 1 � 4) � 10−3 � K2 sr (Bennett et al.
2003c). In V band, csrc = (4 � 5 � 4) � 10−3 � K2 sr.

The source number counts, angular power spectrum, and bispectrum measure the first-, second-, and
third-order moments of dN

�
dS, respectively. The good agreement among these three different estimates of

csrc indicates the validity of the estimate of the effects of the residual point sources in Q band. There is no
visible contribution to the angular power spectrum from the sources in V and W bands. We conclude that
our understanding of the amplitude of the residual point sources is satisfactory for the analysis of the angular
power spectrum not to be contaminated by the sources.

4. CONCLUSIONS

We use cubic (bispectrum) statistics and the Minkowski functionals to measure non-Gaussian fluctu-
ations in the WMAP 1-year sky maps. The cubic statistic [Eq.(7)] and the Minkowski functionals place
limits on the non-linear coupling parameter fNL, which characterizes the amplitude of a quadratic term in
the Bardeen curvature perturbations [Eq. (1)]. It is important to remove the best-fit foreground templates
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from the WMAP maps in order to reduce the non-Gaussian Galactic foreground emission. The cubic statistic
measures phase correlations of temperature fluctuations to find the best estimate of fNL from the foreground-
removed, weighted average of Q+V+W maps as fNL = 38 � 48 (68%) and −58 �

fNL
� 134 (95%). The

Minkowski functions measure morphological structures to find fNL = 22 � 81 (68%) and fNL
� 139 (95%),

in good agreement with the cubic statistic. These two completely different statistics give consistent results,
validating the robustness of our limits. Our limits are 20−30 times better than the previous ones (Komatsu
et al. 2002b; Santos et al. 2002; Cayón et al. 2002), and constrain the relative contribution from the non-
linear term to the r.m.s. amplitude of � to be smaller than 2 � 10−5 (95%), much smaller than the limits
on systematic errors in the WMAP observations. This validates that the angular power spectrum can fully
characterize statistical properties of the WMAP CMB sky maps. We conclude that the WMAP 1-year data
do not show evidence for significant primordial non-Gaussianity of the form in equation (1). Our limits are
consistent with predictions from inflation models based upon a slowly rolling scalar field, � fNL � = 10−2 −10−1.
The span of all non-Gaussian models, however, is large. Other forms such as multi-field inflation models
and topological defects will be tested in the future.

The non-Gaussianity also affects the dark-matter halo mass function dn
�
dM, since the massive halos

at high redshift are sensitive to changes in the tail of the distribution function of density fluctuations. Our
limits show that the number of clusters that would be newly found at z = 1 for M � 1015 M � should be within
+40
−10% of the value predicted from the Gaussian theory. At higher redshifts, however, much larger effects are
still allowed. The number counts dN

�
dz at z = 3 with the limiting mass of 3 � 1014 M � can be reduced by

a factor of 2, or increased by more than a factor of 3. Since the SZ angular power spectrum is primarily
sensitive to massive halos at z � 1 where the impact of non-Gaussianity is constrained to be within 10%, a
measurement of

�
8 from the SZ angular power spectrum is changed by no more than 2%. Our results on

dn
�
dM derived in this paper should be taken as the current observational limits to non-Gaussian effects on

dn
�
dM. In other words, this is the uncertainty that we currently have in dn

�
dM when the assumption of

Gaussian fluctuations is relaxed.

The limits on fNL will improve as the WMAP satellite acquires more data. Monte Carlo simulations
show that the 4-year data will achieve 95% limit of 80. This value will further improve with a more proper
pixel-weighting function that becomes the uniform weighting in the signal-dominated regime (large angular
scales) and becomes the N−1 weighting in the noise-dominated regime (small angular scales). There is little
hope of testing the expected levels of fNL = 10−2 −10−1 from simple inflation models, but some non-standard
models can be excluded.

We have detected non-Gaussian signals arising from the residual radio point sources left unmasked at Q
band, characterized by the reduced point-source angular bispectrum bsrc = (9 � 5 � 4 � 4) � 10−5 � K3 sr2, which,
in turn, gives the point-source angular power spectrum csrc = (15 � 6) � 10−3 � K2 sr. This value agrees well
with those from the source number counts (Bennett et al. 2003c) and the angular power spectrum analysis
(Hinshaw et al. 2003b), giving us confidence on our understanding of the amplitude of the residual point
sources. Since bsrc directly measures csrc without relying on extrapolations, any CMB experiments which
suffer from the point-source contamination should use bsrc to quantify csrc to obtain an improved estimate of
the CMB angular power spectrum for the cosmological-parameter determinations.
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Hinshaw et al. (2003b) found that the best-fit power spectrum to the WMAP temperature data has a
relatively large � 2 value, corresponding to a chance probability of 3%. While still acceptable fit, there
may be missing components in the error propagations over the Fisher matrix. Since the Fisher matrix
is the four-point function of the temperature fluctuations, those missing components (e.g., gravitational
lensing effects) may not be apparent in the bispectrum, the three-point function. The point-source non-
Gaussianity contributes to the Fisher matrix by only a negligible amount, as it is dominated by the Gaussian
instrumental noise. Non-Gaussianity in the instrumental noise due to the 1

�
f striping may have additional

contributions to the Fisher matrix; however, since the Minkowski functionals, which are sensitive to higher-
order moments of temperature fluctuations and instrumental noise, do not find significant non-Gaussian
signals, non-Gaussianity in the instrumental noise is constrained to be very small.

The WMAP mission is made possible by the support of the Office of Space Sciences at NASA Head-
quarters and by the hard and capable work of scores of scientists, engineers, technicians, machinists, data
analysts, budget analysts, managers, administrative staff, and reviewers.

A. SIMULATING CMB SKY MAPS FROM PRIMORDIAL FLUCTUATIONS

In this appendix, we describe how to simulate CMB sky maps from generic primordial fluctuations. As
a specific example, we choose to use the primordial Bardeen curvature perturbations � (x), which generate
CMB anisotropy at a given position of the sky � T ( n) as (Komatsu et al. 2002a)

� T ( n) = T0

�
lm

Ylm( n) � r2dr � lm(r) �
l (r) � (A1)

where � lm(r) is the harmonic transform of � (x) at a given comoving distance r � � x � , � lm(r) � � d2 n � (r� n)Y �lm( n),
and �

l(r) was defined previously (Eq.[5]). We can instead use isocurvature fluctuations or a mixture of the
two. Equation (A1) suggests that �

l(r) is a transfer function projecting � (x) onto � T ( n) through the in-
tegral over the line of sight. Since �

l(r) is just a mathematical function, we pre-compute and store it for
a given cosmology, reducing the computational time of a batch of simulations. We can thus use or extend
equation (A1) to compute � T ( n) for generic primordial fluctuations.

We simulate CMB sky maps using a non-Gaussian model of the form in equation (1) as follows. (1)
We generate �� L(k) as a Gaussian random field in Fourier space for a given initial power spectrum P(k), and
transform it back to real space to obtain � L(x). (2) We transform from Cartesian to spherical coordinates
to obtain � L(r� n), compute its harmonic coefficients � lm(r), and obtain a temperature map of the Gaussian
part � T� ( n) by integrating equation (A1). (3) We repeat this procedure for � 2

L(x)−V −1
x

� d3x � 2
L(x) to obtain

a temperature map of the non-Gaussian part � T� 2( n). (4) By combining these two temperature maps, we
obtain non-Gaussian sky maps for any values of fNL,

� T ( n) = � T� ( n) + fNL � T� 2( n) � (A2)
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We do not need to run many simulations individually for different values of fNL, but run only twice to obtain� T� ( n) and � T� 2( n) for a given initial random number seed. Also, we can combine � T � ( n) for one seed
with � T� 2( n) for the other to make realizations for a particular kind of two-field inflation models. We can
apply the same procedure to isocurvature fluctuations with or without � (x) correlations.

We need the simulation box of the size of the present-day cosmic horizon size Lbox = 2c � 0, where � 0 is
the present-day conformal time. For example, Lbox � 20 h−1 Gpc is needed for a flat universe with � m = 0 � 3,
whereas we need spatial resolution of at least � 20 h−1 Mpc to resolve the last-scattering surface accurately.
From this constraint the number of grid points is at least Ngrid = 10243, and the required amount of physical
memory to store � (x) is at least 4.3 GB. Moreover, when we simulate a sky map having 786 432 pixels at
nside = 256, we need 1.6 GB to store a field in spherical coordinate � (r� n), where the number of r evaluated
for Ngrid = 10243 is 512. Since our algorithm for transforming Cartesian into spherical coordinates requires
another 1.6 GB, in total we need at least 7.5 GB of physical memory to simulate one sky map.

We have generated 300 realizations of non-Gaussian sky maps with Ngrid = 10243 and nside = 256.
It takes 3 hours on 1 processor of SGI Origin 300 to simulate � T � ( n) and � T� 2( n). We have used 6
processors to simulate 300 maps in one week. Figure 7 shows the one-point probability density function
(PDF) of temperature fluctuations measured from simulated non-Gaussian maps (without noise and beam
smearing) compared with the r.m.s. scatter of Gaussian realizations. We find it difficult for the PDF alone to
distinguish non-Gaussian maps of � fNL � � 500 from Gaussian maps, whereas the cubic statistic Sprim (eq.[8])
can easily detect fNL = 100 in the same data sets.

We measure fNL on the simulated maps using Sprim to see if it can accurately recover fNL. Similar
tests show the Minkowski functionals to be unbiased and able to discriminate different fNL values at levels
consistent with the quoted uncertainties. We also measure the point-source angular bispectrum bsrc to see
if it returns null values as the simulations do not contain point sources. We have included noise properties
and window functions in the simulations. Figure 8 shows histograms of fNL and bsrc measured from 300
simulated maps of fNL = 100 (solid lines) and fNL = 0 (dashed lines). Our statistics find correct values for
fNL and find null values for bsrc; thus, our statistics are unbiased, and fNL and bsrc are orthogonal to each
other as pointed out by Komatsu & Spergel (2001).

B. POWER OF THE POINT-SOURCE BISPECTRUM

In this appendix, we test our estimator for bsrc and csrc using simulated Q-band maps of point sources,
CMB, and detector noise. The 44 GHz source count model of T98 was used to generate the source pop-
ulations. The total source count in each realization was fixed to 9043, the number predicted by T98 to lie
between Smin = 0 � 1Jy and Smax = 10Jy. By generating uniform deviates u � (0 � 1) and transforming to flux S
via

u =
N( � Smin) − N( � S)

N( � Smin) − N( � Smax)
� (B1)

we obtain the desired spectrum. The sources were distributed evenly over the sky and convolved with a
Gaussian profile approximating the Q-band beam. Flux was converted to peak brightness using the values



– 21 –

in Table 8 of Page et al. (2003b). The CMB and noise realizations were not varied between realizations. The
goal in this appendix is to prove that our estimator for bsrc works well and is very powerful in estimating
csrc.

The left panel of Figure 9 compares the measured bsrc from simulated maps with the expectations of
the simulations. Black, dark-gray, and light-gray indicate three different realizations of point sources. The
measurements agree well with the expectations at Sc

� 1 � 75 Jy. They however show significant scatter at
Sc � 1 � 75 Jy, because our filter for computing bsrc [eq. (21)] does not include contribution from csrc to

�
Cl ,

making the filter less optimal in the limit of “too many” unmasked point sources. We can see from the figure
that csrc at Sc � 2 Jy is comparable to or larger than the noise power spectrum for Q band, 54 � 10−3 � K2 sr.

Fortunately this is not a problem in practice, as we can detect and mask those bright sources which
contribute significantly to

�
Cl . The residual point sources that we cannot detect (therefore we want to quantify

using bsrc) should be hidden in the noise having only a small contribution to
�

Cl . In this faint-source regime
bsrc works well in measuring the amplitude of residual point sources, offering a promising way for estimating
csrc. The right panel of Figure 9 compares csrc estimated from bsrc [Eq. (17)] with the expectations. The
agreement is good for Sc

� 1 � 75 Jy, proving that estimates of csrc from bsrc are unbiased and powerful. Since
bsrc measures csrc directly, we can use it for any CMB experiments which suffer from the effect of residual
point sources.

C. THE ANGULAR BISPECTRUM FROM A POTENTIAL STEP

A scalar-field potential V ( � ) with features can generate large non-Gaussian fluctuations in CMB by
breaking the slow-roll conditions at the location of the features (Kofman et al. 1991; Wang & Kamionkowski
2000). We estimate the impact of the features by using a scale-dependent fNL,

fNL( � ) = −
5

24 � G

���
2 lnH� � 2 � � (C1)

which is calculated from a non-linear transformation between the curvature perturbations in the comoving
gauge and the scalar-field fluctuations in the spatially flat gauge (Salopek & Bond 1990, 1991). This ex-
pression does not assume the slow-roll conditions. Although this expression does not include all effects
contributing to fNL during inflation driven by a single field (Maldacena 2002), we assume that an order-of-
magnitude estimate can still be obtained.

A sharp feature in V ( � ) at � f produces a significantly scale-dependent fNL( � ) near � f through the
derivatives of H in equation (C1). We illustrate the effects of the steps using the potential features proposed
by Adams et al. (2001),

V ( � ) =
1
2

m2� � 2 � 1 + c tanh

� � − � f

d
��� � (C2)

which has a step in V ( � ) at � f with the height c and the slope d−1. Adams et al. (1997) show that the steps are
created by a class of supergravity models in which symmetry-breaking phase transitions of many fields in
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flat directions gravitationally coupled to � continuously generate steps in V ( � ) every 10 − 15 e-folds, giving
a chance for a step to exist within the observable region of V ( � ).

It is instructive to evaluate equation (C1) combined with equation (C2) in the slow-roll limit,
�

2 lnH
� � � 2 �

1
2

�
2 lnV

� � � 2. For � c ��� 1, one obtains

fNL( � ) �
5

24 � G

�
1� 2 +

c
d2

tanh x

cosh2 x
� � (C3)

where x � ( � − � f)
�
d. The first term corresponds to a standard, nearly scale-independent prediction giving

7 � 4 � 10−3 at � = 3mplanck, while the second term reveals a significant scale-dependence. The function
tanh x

�
cosh2 x is a symmetric odd function about x = 0 with extrema of � 0 � 385 at x � � 0 � 66. The picture is

the following: as � rolls down V ( � ) from a positive x � 0 � 66, � gets accelerated at x � 0 � 66, reaches constant
velocity at x = 0, decelerates at x � −0 � 66, and finally reaches slow roll at x

� −0 � 66. The ratio of the second
term in equation (C3) to the first at the extrema is � 0 � 385c( � � d)2 . For example, c = 0 � 02 and � � d = 300
(i.e., d = 0 � 01mplanck) make the amplitude of the second term 700 times larger than the first, giving � fNL � � 5
at the extrema. Despite the slow-roll conditions having a tendency to underestimate fNL, it is possible to
obtain � fNL � � 1. Neglecting the first term in equation (C3) and converting � for k, one obtains

fNL(k) �
5c

24 � Gd2 hstep(k) � 5c
24 � Gd2

tanh xk

cosh2 xk
� (C4)

where xk � d−1(
� � � � ln k)f(k

�
kf − 1) = d−1(

�� � H)f(k
�
kf − 1) for k − kf � kf. The slow-roll approximation

gives xk � (4 � G � fd)−1(k
�
kf −1). Finally, following the method of Komatsu & Spergel (2001), we obtain the

reduced bispectrum of a potential step model, bstep
l1l2l3

, as

bstep
l1l2l3

= 2

�
5c

24 � Gd2 � � �
0

r2dr
� �

l1 (r)
�

l2 (r) � step
l3

(r) + (2 permutations) � � (C5)

where
�

l(r) is given by equation (6), and

� step
l (r) � 2� � k2dkhstep(k)gTl(k) jl (kr) � (C6)

The amplitude is thus proportional to c
�
d2: a bigger (larger c) and steeper (smaller d) step gives a larger

bispectrum. The steepness affects the amplitude more, because the non-Gaussianity is generated by breaking
the slow-roll conditions.

Since bstep
l1l2l3

linearly scales as c for a fixed d, we can fit for c by using exactly the same method as

for the scale-independent fNL, but with �
l(r) in equation (3) replaced by � step

l (r). The exact form of the
fitting parameter in the slow-roll limit is 5c

�
(24 � Gd2). A reason for the similarity between the two models

in methods for the measurement is explained as follows. Komatsu et al. (2002a) have shown that B( n � r)
[Eq.(4)] is a Wiener-filtered, reconstructed map of the primordial fluctuations � ( n � r). Our cubic statistic
[Eq.(7)] effectively measures the skewness of the reconstructed � field, maximizing the sensitivity to the
primordial non-Gaussianity. One of the three maps comprising the cubic statistic is however not B( n � r), but
A( n � r) given by equation (3). This map defines what kind of non-Gaussianity to look for, or more detailed
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form of the bispectrum. For the potential step case, Astep( n � r) made of � step
l (r) picks up the location of the

step to measure 5c
�
(24 � Gd2) near kf, while for the form in equation (1), A( n � r) explores all scales on equal

footing to measure the scale-independent fNL.

The distinct features in k space are often smeared out in l space via the projection. This effect is
estimated from equation (C6) as follows. The function hstep(k) near kf is accurately approximated by
hstep(k) � 0 � 385sin(2xk), which has a period of � k = 4 � 2G � fdkf. On the other hand, the radiation trans-
fer function gTl(k) behaves as jl(kr � ) where r � is the comoving distance to the photon decoupling epoch,
and gTl(k) jl(kr) behaves as j2

l (kr � ) (the integral is very small when r �= r � ). The oscillation period of this
part is thus � k = � �

r � for kr � � l. A ratio of the period of hstep(k) to that of gTl(k) jl(kr) is then estimated
as 4 � G � fdr � kf � (lf

�
3)(d

�
0 � 01mplanck )( � f

�
3mplanck), where lf � kfr � is the angular wave number of the lo-

cation of the step. We thus find that hstep(k) oscillates much more slowly than the rest of the integrand in
equation (C6) for lf � 1.

What does it mean? It means that the results would look as if there were two distinct regions in l
space where fNL is very large: a positive fNL is found at l

�
lf and a negative one at l � lf. The estimated

location is l
�
lf � 1 � 0 � 66(4 � G � fd) � 1 � 0 � 2(d

�
0 � 01mplanck )( � f

�
3mplanck); thus, the positive and negative

regions are separated in l by only 40%, making the detection difficult when many l modes are combined to
improve the signal-to-noise ratio. The two extrema would cancel out to give only small signals. In other
words, it is still possible that non-Gaussianity from a potential step is “hidden” in our measurements shown
in Figure 1. Note that the cancellation occurs because of the point symmetry of hstep(k) about k = kf. If the
function has a knee instead of a step, then the cancellation does not occur and there would be a single region
in l space where � fNL � is large (Wang & Kamionkowski 2000). Note that our estimate in this Appendix was
based upon equation (C3), which uses the slow-roll approximations. While instructive, since the slow-roll
approximations break down near the features, our estimate may not be very accrate. One needs to integrate
the equation of motion of the scalar field to evaluate equation (C1) for more accurate estimations of the
effect.
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Fig. 3.— Limits to fNL from � 2 fit of the WMAP data to the non-Gaussian models [Eq. (1)]. The fit is a
joint analysis of the three Minkowski functionals at 28

�
pixel resolution. There are 44 degrees of freedom.
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Fig. 4.— The limits to the effect of the primordial non-Gaussianity on the dark-matter halo mass function
dn

�
dM as a function of z. The shaded area represents the 95% constraint on the ratio of the non-Gaussian

dn
�
dM to the Gaussian one.
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Fig. 5.— The same as figure 4 but for the dark-matter halo number counts dN
�
dz as a function of the

limiting mass Mlim of a survey.
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Fig. 6.— The point-source angular bispectrum bsrc and power spectrum csrc. The left panels show bsrc in
Q band (top panel) and V band (bottom panel). The shaded areas show measurements from the WMAP
sky maps with the standard source cut, while the filled circles show those with flux thresholds Sc defined at
4.85 GHz. The dashed lines show predictions from equation (17) with N( � S) modeled by Toffolatti et al.
(1998), while the solid lines are those multiplied by 0.65 to match the WMAP measurements. The right
panels show csrc. The filled circles are computed from the measured bsrc substituted into equation (19). The
lines are from equation (18). The error bars are not independent, because the distribution is cumulative.
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Fig. 7.— One-point PDF of temperature fluctuations measured from simulated non-Gaussian maps (noise
and beam smearing are not included). From the top-left to the bottom-right panel the solid lines show the
PDF for fNL = 100, 500, 1000, and 3000, while the dashed lines enclose the r.m.s. scatter of Gaussian
realizations (i.e., fNL = 0).



– 33 –

Fig. 8.— The distribution of the non-linear coupling parameter fNL (the left panel) and the point-source
bispectrum bsrc (the right panel) measured from 300 simulated realizations of non-Gaussian maps for fNL =
100 (solid line) and fNL = 0 (dashed line). The simulations include noise properties and window functions
of the WMAP 1-year data, but do not include point sources.
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Fig. 9.— Testing the estimator for the reduced point-source bispectrum bsrc [Eq.(22)]. The left panel shows
bsrc measured from a simulated map including point sources and properties of the WMAP sky map at Q
band, as a function of flux cut Sc (filled circles). Black, dark-gray, and light-gray indicate three different
realizations of point sources. The solid line is the expectation from the input source number counts in the
point-source simulation. The right panel compares the power spectrum csrc estimated from bsrc with the
expectation. The error bars are not independent, because the distribution is cumulative. The behavior for
Sc � 2 Jy shows the cumulative effect of sources with brightness comparable to the instrument noise (see
text in Appendix B).


